A splice variant of the myosin phosphatase regulatory subunit tunes arterial reactivity and suppresses response to salt loading

Author:

Reho John J.1,Kenchegowda Doreswamy1,Asico Laureano D.1,Fisher Steven A.1

Affiliation:

1. Department of Medicine, Divisions of Cardiovascular Medicine and Nephrology, University of Maryland-Baltimore, Baltimore, Maryland

Abstract

The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ−; E24−/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3