Differential and combined effects of cardiotrophin-1 and TGF-β1 on cardiac myofibroblast proliferation and contraction

Author:

Drobic Vanja,Cunnington Ryan H.,Bedosky Kristen M.,Raizman Joshua E.,Elimban Vinit V.,Rattan Sunil G.,Dixon Ian M. C.

Abstract

Myofibroblasts respond to an array of signals from mitogens and cytokines during the course of wound healing following a myocardial infarction (MI), and these signals may coordinate ventricular myofibroblast proliferation. Furthermore, myofibroblasts are contractile and contribute to wound contraction by imparting mechanical tension on surrounding extracellular matrix. Although TGF-β1, CT-1, and PDGF-BB participate in various stages of post-MI wound healing, their combined net effect(s) on myofibroblast function is unknown. We investigated myofibroblast proliferation, expression of cell cycle proteins, and contractile function of cells treated with TGF-β1 and/or CT-1. We confirmed that TGF-β1 (10 ng/ml) suppresses proliferation of these cells, whereas CT-1 (10 ng/ml) and, for comparative purposes, PDGF-BB (1 ng/ml) treatments were associated with proliferation. Specific TGF-β1 treatment ablated CT-1-induced myofibroblast proliferation. TGF-β1 effects were specific, as they were suppressed by either TGF-β-neutralizing antibody or viral Smad7 overexpression. TGF-β1 treatment also increased expression of p27 and decreased expression of cyclin E and Cdk2 in primary cells. CT-1 (10 ng/ml) treatment of myofibroblasts had no effect on collagen gel deformation versus controls, whereas TGF-β1 (10 ng/ml) and PDGF (10 ng/ml) treatments were associated with significant cell contraction; again, TGF-β1-mediated contraction was unaffected by CT-1. Alone, CT-1 and TGF-β1 treatments exert opposing effects on myofibroblast function, whereas in combination TGF-β1-mediated effects supersede those of CT-1 (and PDGF-BB). Thus TGF-β1 and CT-1 exert differential effects on myofibroblast proliferation and contraction in vitro, and we suggest that a balance of these effects may be important for the execution of normal cardiac wound healing.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3