Affiliation:
1. Department of Biomedical Science,
2. Department of Molecular Pharmacology, and Physiology, and
3. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
Abstract
Cardiac hypertrophy in response to hypertension or myocardial infarction is a pathological indicator associated with heart failure (HF). A central component of the remodeling process is the loss of cardiomyocytes via cell death pathways regulated by the mitochondrion. Recent evidence has indicated that exercise training can attenuate or reverse pathological remodeling, creating a physiological phenotype. The purpose of this study was to examine left ventricular (LV) function, remodeling, and cardiomyocyte mitochondrial function in aortic-banded (AB) sedentary (HFSED; n = 6), AB exercise-trained (HFTR, n = 5), and control sedentary ( n = 5) male Yucatan miniature swine. LV hypertrophy was present in both AB groups before the start of training, as indicated by increases in LV end-diastolic volume, LV end-systolic volume (LVESV), and LV end-systolic dimension (LVESD). Exercise training (15 wk) prevented further increases in LVESV and LVESD ( P < 0.05). The heart weight-to-body weight ratio, LV + septum-to-body weight ratio, LV + septum-to-right ventricle ratio, and cardiomyocyte cross-sectional area were increased in both AB groups postmortem regardless of training status. Preservation of LV function after exercise training, as indicated by the maintenance of fractional shortening, ejection fraction, and mean wall shortening and increased stroke volume, was associated with an attenuation of the increased LV fibrosis (23%) and collagen (36%) observed in HFSED animals. LV mitochondrial dysfunction, as measured by Ca2+-induced mitochondrial permeability transition, was increased in HFSED ( P < 0.05) but not HFTR animals. In conclusion, low-intensity interval exercise training preserved LV function as exemplified by an attenuation of fibrosis, maintenance of a positive inotropic state, and inhibition of mitochondrial dysfunction, providing further evidence of the therapeutic potential of exercise in a clinical setting.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献