Reduced EGFR causes abnormal valvular differentiation leading to calcific aortic stenosis and left ventricular hypertrophy in C57BL/6J but not 129S1/SvImJ mice

Author:

Barrick Cordelia J.,Roberts Reade B.,Rojas Mauricio,Rajamannan Nalini M.,Suitt Carolyn B.,O'Brien Kevin D.,Smyth Susan S.,Threadgill David W.

Abstract

Epidermal growth factor receptor (EGFR) signaling contributes to aortic valve development in mice. Because developmental phenotypes in Egfr-null mice are dependent on genetic background, the hypomorphic Egfr wa2 allele was made congenic on C57BL/6J (B6) and 129S1/SvImJ (129) backgrounds and used to identify the underlying cellular cause of EGFR-related aortic valve abnormalities. Egfr wa2/wa2 mice on both genetic backgrounds develop aortic valve hyperplasia. Many B6- Egfr wa2/wa2 mice die before weaning, and those surviving to 3 mo of age or older develop severe left ventricular hypertrophy and heart failure. The cardiac phenotype was accompanied by significantly thicker aortic cusps and larger transvalvular gradients in B6- Egfr wa2/wa2 mice compared with heterozygous controls and age-matched Egfr wa2 homozygous mice on either 129 or B6129F1 backgrounds. Histological analysis revealed cellular changes in B6- Egfr wa2/wa2 aortic valves underlying elevated pressure gradients and progression to heart failure, including increased cellular proliferation, ectopic cartilage formation, extensive calcification, and inflammatory infiltrate, mimicking changes seen in human calcific aortic stenosis. Despite having congenitally enlarged valves, 129 and B6129F1- Egfr wa2/wa2 mice have normal lifespans, absence of left ventricular hypertrophy, and normal systolic function. These results show the requirement of EGFR activity for normal valvulogenesis and demonstrate that dominantly acting genetic modifiers curtail pathological changes in congenitally deformed valves. These studies provide a novel model of aortic sclerosis and stenosis and suggest that long-term inhibition of EGFR signaling for cancer therapy may have unexpected consequences on aortic valves in susceptible individuals.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3