Caspase lesions of PVN-projecting MnPO neurons block the sustained component of CIH-induced hypertension in adult male rats

Author:

Marciante Alexandria B.1,Wang Lei A.1ORCID,Little Joel T.1,Cunningham J. Thomas1ORCID

Affiliation:

1. Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas

Abstract

Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250–300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension.NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute on Aging

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3