Involvement of Na+/Ca2+ exchanger in catecholamine-induced increase in intracellular calcium in cardiomyocytes

Author:

Saini Harjot K.,Tripathi Onkar N.,Zhang Shetuan,Elimban Vijayan,Dhalla Naranjan S.

Abstract

Although sarcolemmal (SL) Na+/Ca2+ exchanger is known to regulate the intracellular Ca2+ concentration ([Ca2+]i), its involvement in catecholamine-induced increase in [Ca2+]i is not fully understood. To gain some information in this regard, isolated rat cardiomyocytes were treated with different agents, which are known to modify Ca2+ movements, in the absence or presence of a β-adrenoceptor agonist, isoproterenol, and [Ca2+]i in cardiomyocytes was determined spectrofluorometrically with fura-2 AM. Treatment with isoproterenol did not alter [Ca2+]i in quiescent cardiomyocytes, whereas the ATP (purinergic receptor agonist)-induced increase in [Ca2+]i was significantly potentiated by isoproterenol. Unlike ryanodine and cyclopiazonic acid, which affect the sarcoplasmic reticulum function, SL L-type Ca2+ channel blockers verapamil and diltiazem, as well as a SL Ca2+-pump inhibitor, vanadate, caused a significant depression in the isoproterenol-induced increase in [Ca2+]i. The SL Na+/Ca2+ exchange blockers amiloride, Ni2+, and KB-R7943 also attenuated the isoproterenol-mediated increase in [Ca2+]i. Combination of KB-R7943 and verapamil showed additive inhibitory effects on the isoproterenol-induced increase in [Ca2+]i. The isoproterenol-induced increase in [Ca2+]i in KCl-depolarized cardiomyocytes was augmented by low Na+; this augmentation was significantly depressed by treatment with KB-R7943. The positive inotropic action of isoproterenol in isolated hearts was also reduced by KB-R7943. These data suggest that in addition to SL L-type Ca2+ channels, SL Na+/Ca2+ exchanger seems to play an important role in catecholamine-induced increase in [Ca2+]i in cardiomyocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3