Ca2+/calmodulin-dependent protein kinase II increases the susceptibility to the arrhythmogenic action potential alternans in spontaneously hypertensive rats

Author:

Mitsuyama Hirofumi1,Yokoshiki Hisashi1,Watanabe Masaya1,Mizukami Kazuya1,Shimokawa Junichi1,Tsutsui Hiroyuki1

Affiliation:

1. Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Abstract

Action potential duration alternans (APD-ALT), defined as long-short-long repetitive pattern of APD, potentially leads to lethal ventricular arrhythmia. However, the mechanisms of APD-ALT in the arrhythmogenesis of cardiac hypertrophy remain undetermined. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to modulate the function of cardiac sarcoplasmic reticulum and play an important role in Ca2+ cycling. We thus aimed to determine the role of CaMKII in the increased susceptibility to APD-ALT and arrhythmogenesis in the hypertrophied heart. APD was measured by high-resolution optical mapping in left ventricular (LV) anterior wall from normotensive Wistar-Kyoto (WKY; n = 10) and spontaneously hypertensive rats (SHR; n = 10) during rapid ventricular pacing. APD-ALT was evoked at significantly lower pacing rate in SHR compared with WKY (382 ± 43 vs. 465 ± 45 beats/min, P < 0.01). These changes in APD-ALT in SHR were completely reversed by KN-93 (1 μmol/l; n = 5), an inhibitor of CaMKII, but not its inactive analog, KN-92 (1 μmol/l; n = 5). The magnitude of APD-ALT was also significantly greater in SHR than WKY and was completely normalized by KN-93. Ventricular fibrillation (VF) was induced by rapid pacing more frequently in SHR than in WKY (60 vs. 10%; P < 0.05), which was also abolished by KN-93 (0%, P < 0.05). Western blot analyses indicated that the CaMKII autophosphorylation at Thr287 was significantly increased in SHR compared with WKY. The increased susceptibility to APD-ALT and VF during rapid pacing in hypertrophied heart was prevented by KN-93. CaMKII could be an important mechanism of arrhythmogenesis in cardiac hypertrophy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3