Affiliation:
1. Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
Abstract
Action potential duration alternans (APD-ALT), defined as long-short-long repetitive pattern of APD, potentially leads to lethal ventricular arrhythmia. However, the mechanisms of APD-ALT in the arrhythmogenesis of cardiac hypertrophy remain undetermined. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is known to modulate the function of cardiac sarcoplasmic reticulum and play an important role in Ca2+ cycling. We thus aimed to determine the role of CaMKII in the increased susceptibility to APD-ALT and arrhythmogenesis in the hypertrophied heart. APD was measured by high-resolution optical mapping in left ventricular (LV) anterior wall from normotensive Wistar-Kyoto (WKY; n = 10) and spontaneously hypertensive rats (SHR; n = 10) during rapid ventricular pacing. APD-ALT was evoked at significantly lower pacing rate in SHR compared with WKY (382 ± 43 vs. 465 ± 45 beats/min, P < 0.01). These changes in APD-ALT in SHR were completely reversed by KN-93 (1 μmol/l; n = 5), an inhibitor of CaMKII, but not its inactive analog, KN-92 (1 μmol/l; n = 5). The magnitude of APD-ALT was also significantly greater in SHR than WKY and was completely normalized by KN-93. Ventricular fibrillation (VF) was induced by rapid pacing more frequently in SHR than in WKY (60 vs. 10%; P < 0.05), which was also abolished by KN-93 (0%, P < 0.05). Western blot analyses indicated that the CaMKII autophosphorylation at Thr287 was significantly increased in SHR compared with WKY. The increased susceptibility to APD-ALT and VF during rapid pacing in hypertrophied heart was prevented by KN-93. CaMKII could be an important mechanism of arrhythmogenesis in cardiac hypertrophy.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献