Stanniocalcin-1 is a naturally occurring L-channel inhibitor in cardiomyocytes: relevance to human heart failure

Author:

Sheikh-Hamad David,Bick Roger,Wu Gang-Yi,Christensen Birgitte Mønster,Razeghi Peter,Poindexter Brian,Taegtmeyer Heinrich,Wamsley Ann,Padda Ranjit,Entman Mark,Nielsen Søren,Youker Keith

Abstract

Cardiomyocytes of the failing heart undergo profound phenotypic and structural changes that are accompanied by variations in the genetic program and profile of calcium homeostatic proteins. The underlying mechanisms for these changes remain unclear. Because the mammalian counterpart of the fish calcium-regulating hormone stanniocalcin-1 (STC1) is expressed in the heart, we reasoned that STC1 might play a role in the adaptive-maladaptive processes that lead to the heart failure phenotype. We examined the expression and localization of STC1 in cardiac tissue of patients with advanced heart failure before and after mechanical unloading using a left ventricular assist device (LVAD), and we compared the results with those of normal heart tissue. STC1 protein is markedly upregulated in cardiomyocytes and arterial walls of failing hearts pre-LVAD and is strikingly reduced after LVAD treatment. STC1 is diffusely expressed in cardiomyocytes, although nuclear predominance is apparent. Addition of recombinant STC1 to the medium of cultured rat cardiomyocytes slows their endogenous beating rate and diminishes the rise in intracellular calcium with each contraction. Furthermore, using whole cell patch-clamp studies in cultured rat cardiomyocytes, we find that addition of STC1 to the bath causes reversible inhibition of transmembrane calcium currents through L-channels. Our data suggest differential regulation of myocardial STC1 protein expression in heart failure. In addition, STC1 may regulate calcium currents in cardiomyocytes and may contribute to the alterations in calcium homeostasis of the failing heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3