The obligatory role of the actin cytoskeleton on inward remodeling induced by dithiothreitol activation of endogenous transglutaminase in isolated arterioles

Author:

Castorena-Gonzalez Jorge A.12,Staiculescu Marius C.1,Foote Christopher A.1,Polo-Parada Luis12,Martinez-Lemus Luis A.12

Affiliation:

1. Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri; and

2. Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri

Abstract

Inward remodeling is the most prevalent structural change found in the resistance arteries and arterioles of hypertensive individuals. Separate studies have shown that the inward remodeling process requires transglutaminase activation and the polymerization of actin. Therefore, we hypothesize that inward remodeling induced via endogenous transglutaminase activation requires and depends on actin cytoskeletal structures. To test this hypothesis, isolated and cannulated rat cremaster arterioles were exposed to dithiothreitol (DTT) to activate endogenous transglutaminases. DTT induced concentration-dependent vasoconstriction that was suppressed by coincubation with cystamine or cytochalasin-D to inhibit tranglutaminase activity or actin polymerization, respectively. Prolonged (4 h) exposure to DTT caused arteriolar inward remodeling that was also blocked by the presence of cystamine or cytochalasin-D. DTT inwardly remodeled arterioles had reduced passive diameters, augmented wall thickness-to-lumen ratios and altered elastic characteristics that were reverted upon disruption of the actin cytoskeleton with mycalolide-B. In freshly isolated arterioles, exposure to mycalolide-B caused no changes in their passive diameters or their elastic characteristics. These results suggest that, in arterioles, the early stages of the inward remodeling process induced by prolonged endogenous transglutaminase activation require actin dynamics and depend on changes in actin cytoskeletal structures.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3