Pregnancy prevents hypertensive remodeling and decreases myogenic reactivity in posterior cerebral arteries from Dahl salt-sensitive rats: a role in eclampsia?

Author:

Aukes Annet M.,Vitullo Lisa,Zeeman Gerda G.,Cipolla Marilyn J.

Abstract

Previous studies have demonstrated that pregnancy prevents protective hypertension-induced remodeling of cerebral arteries using nitric oxide synthase (NOS) inhibition to raise mean arterial pressure (MAP). In the present study, we investigated whether this effect of pregnancy was specific to NOS inhibition by using the Dahl salt-sensitive (SS) rat as a model of hypertension. Nonpregnant ( n = 16) and late-pregnant ( n = 17) Dahl SS rats were fed either a high-salt diet (8% NaCl) to raise blood pressure or a low-salt diet (<0.7% NaCl). Third-order posterior cerebral arteries were isolated and pressurized in an arteriograph chamber to measure active responses to pressure and passive remodeling. Several vessels from each group were stained for protein gene product 9.5 to determine perivascular nerve density. Blood pressure was elevated in both groups on high salt. The elevated MAP was associated with significantly smaller active and passive diameters ( P < 0.05) and inward remodeling in the nonpregnant hypertensive group only. Whereas no structural changes were observed in the late-pregnant hypertensive animals, both late-pregnant groups had diminished myogenic reactivity ( P < 0.05). Nerve density in both the late-pregnant groups was significantly greater when compared with the nonpregnant groups, suggesting that pregnancy has a trophic influence on perivascular innervation of the posterior cerebral artery. However, hypertension lowered the nerve density in both nonpregnant and late-pregnant animals. It therefore appears that pregnancy has an overall effect to prevent hypertension-induced remodeling regardless of the mode of hypertension. This effect may predispose the brain to autoregulatory breakthrough, hyperperfusion, and eclampsia when MAP is elevated.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3