The calcineurin-myocyte enhancer factor 2c pathway mediates cardiac hypertrophy induced by endoplasmic reticulum stress in neonatal rat cardiomyocytes

Author:

Zhang Zhen-Ying12,Liu Xiu-Hua2,Hu Wei-Cheng1,Rong Fei2,Wu Xu-Dong2

Affiliation:

1. Department of Pathophysiology, Medicine School of Shandong University, Jinan; and

2. Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China

Abstract

Endoplasmic reticulum (ER) stress (ERS) is involved in various cardiovascular diseases. Our previous study verified that ERS took part in the development of cardiac hypertrophy; however, its mechanism is still unclear. This study aimed to investigate the roles of the calcineurin (CaN) signal pathway in hypertrophy induced by the ERS inductor thapsigargin (TG) in neonatal cardiomyocytes from Sprague-Dawley rats. Investigation of ER chaperone expression, ER staining, and calreticulin immunoflourescence were used to detect the ERS response. mRNA expression of atrial natriuretic peptide and brain natriuretic peptide, total protein synthesis rate, and cell surface area were used to evaluate cardiac hypertrophy induced by TG. TG induced a significant ERS response along with hypertrophy in a dose- and time-dependent manner in cardiomyocytes, which was verified by treatment with tunicamycin, another ERS inducer. Furthermore, TG induced a significant elevation of the intracellular Ca2+level, CaN activation, and myocyte enhancer factor 2c (MEF2c) expression in a dose- and time-dependent manner in cardiomyocytes. Cyclosporine A, a CaN inhibitor, markedly suppressed MEF2c nuclear translocation and inhibited TG-induced hypertrophy. These results demonstrate that ERS induces cardiac hypertrophy and that the CaN-MEF2c pathway is involved in ERS-induced hypertrophy in cardiomyocytes.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3