Author:
Belmadani Souad,Zerfaoui Mourad,Boulares Hamid A.,Palen Desiree I.,Matrougui Khalid
Abstract
This study determines that vascular smooth muscle cell (VSMC) signaling through extracellular signal-regulated kinase (ERK) 1/2-mitogen-activated protein (MAP) kinase, αvβ3-integrin, and transforming growth factor (TGF)-β1 dictates collagen type I network induction in mesenteric resistance arteries (MRA) from Type 1 diabetic (streptozotocin) or hypertensive (HT; ANG II) mice. Isolated MRA were subjected to a pressure-passive-diameter relationship. To delineate cell types and mechanisms, cultured VSMC were prepared from MRA and stimulated with ANG II (100 nM) and high glucose (HG, 22 mM). Pressure-passive-diameter relationship reduction was associated with increased collagen type I deposition in MRA from HT and diabetic mice compared with control. Treatment of HT and diabetic mice with neutralizing TGF-β1 antibody reduced MRA stiffness and collagen type I deposition. Cultured VSMC stimulated with HG or ANG II for 5 min increased ERK1/2-MAP kinase phosphorylation, whereas a 48-h stimulation induced latent TGF-β1, αvβ3-integrin, and collagen type 1 release in the conditioned media. TGF-β1 bioactivity and Smad2 phosphorylation were αvβ3-integrin-dependent, since β3-integrin antibody and αvβ3-integrin inhibitor (SB-223245, 10 μM) significantly prevented TGF-β1 bioactivity and Smad2 phosphorylation. Pretreatment of VSMC with ERK1/2-MAP kinase inhibitor (U-0126, 1 μM) reduced αvβ3-integrin, TGF-β1, and collagen type 1 content. Additionally, αvβ3-integrin antibody, SB-223245, TGF-β1-small-intefering RNA (siRNA), and Smad2-siRNA (40 nM) prevented collagen type I network formation in response to ANG II and HG. Together, these data provide evidence that resistance artery fibrosis in Type 1 diabetes and hypertension is a consequence of abnormal collagen type I release by VSMC and involves ERK1/2, αvβ3-integrin, and TGF-β1 signaling. This pathway could be a potential target for overcoming small artery complications in diabetes and hypertension.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献