Quantification of coronary microvascular resistance using angiographic images for volumetric blood flow measurement: in vivo validation

Author:

Zhang Zhang12,Takarada Shigeho3,Molloi Sabee13

Affiliation:

1. Departments of 1Radiological Sciences and

2. Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China

3. Medicine (Cardiology), University of California-Irvine, Irvine, California; and

Abstract

Structural coronary microcirculation abnormalities are important prognostic determinants in clinical settings. However, an assessment of microvascular resistance (MR) requires a velocity wire. A first-pass distribution analysis technique to measure volumetric blood flow has been previously validated. The aim of this study was the in vivo validation of the MR measurement technique using first-pass distribution analysis. Twelve anesthetized swine were instrumented with a transit-time ultrasound flow probe on the proximal segment of the left anterior descending coronary artery (LAD). Microspheres were injected into the LAD to create a model of microvascular dysfunction. Adenosine (400 μg·kg−1·min−1) was used to produce maximum hyperemia. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. Volumetric blood flow measurements (Qa) were made using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. Blood flow from the flow probe (Qp), coronary pressure (Pa), and right atrium pressure (Pv) were continuously recorded. Flow probe-based normalized MR (NMRp) and angiography-based normalized MR (NMRa) were calculated using Qp and Qa, respectively. In 258 measurements, Qa showed a strong correlation with the gold standard Qp (Qa = 0.90 Qp + 6.6 ml/min, r2 = 0.91, P < 0.0001). NMRa correlated linearly with NMRp (NMRa = 0.90 NMRp + 0.02 mmHg·ml−1·min−1, r2 = 0.91, P < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between NMRa and NMRp. In conclusion, a technique based on angiographic image data for quantifying NMR was validated using a swine model. This study provides a method to measure NMR without using a velocity wire, which can potentially be used to evaluate microvascular conditions during coronary arteriography.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of hepatic tumor portal perfusion using mesenteric angiography: A pilot study in 5 dogs;Journal of Veterinary Internal Medicine;2018-12-18

2. Physiome approach for the analysis of vascular flow reserve in the heart and brain;Pflügers Archiv - European Journal of Physiology;2017-03-28

3. Data Science of Stroke Imaging and Enlightenment of the Penumbra;Frontiers in Neurology;2015-03-05

4. Determination of culprit coronary artery branches using hemodynamic indices from angiographic images;The International Journal of Cardiovascular Imaging;2014-10-07

5. Methods to Assess Coronary Microvascular Function;Coronary Microvascular Dysfunction;2013-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3