Affiliation:
1. Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, School of Medicine in Shreveport, Shreveport, Louisiana 71130
Abstract
Intravital microscopic techniques were used to examine the mechanisms underlying bradykinin-induced leukocyte/endothelial cell adhesive interactions (LECA) and venular protein leakage (VPL) in single postcapillary venules of the rat mesentery. The effects of bradykinin superfusion to increase LECA and VPL were prevented by coincident topical application of either a bradykinin-B2 receptor antagonist, a cell-permeant superoxide dismutase (SOD) mimetic or antioxidant, or inhibitors of cytochrome P-450 epoxygenase (CYPE) or protein kinase C (PKC) but not by concomitant treatment with either SOD, a mast cell stabilizer, or inhibitors of nitric oxide synthase, cyclooxygenase, xanthine oxidase, NADPH oxidase, or platelet-activating factor. Immunoneutralizing P-selectin or intercellular adhesion molecule-1 (ICAM-1) completely prevented bradykinin-induced leukocyte adhesion and emigration but did not affect VPL. On the other hand, stabilization of F-actin with phalloidin prevented bradykinin-induced leukocyte emigration and VPL but did not alter leukocyte adhesion. These data indicate that bradykinin induces LECA in rat mesenteric venules via a B2-receptor-initiated, CYPE-, oxidant- and PKC-mediated, P-selectin- and ICAM-1-dependent mechanism. Bradykinin also produced VPL, an effect that was initiated by stimulation of B2receptors and involved CYPE and PKC activation, oxidant generation, and cytoskeletal reorganization but was independent of leukocyte adherence and emigration.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献