Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy

Author:

Feygin Julia,Hu Qinsong,Swingen Cory,Zhang Jianyi

Abstract

This study utilized porcine models of postinfarction left ventricular (LV) remodeling [myocardial infarction (MI); n = 8] and concentric LV hypertrophy secondary to aortic banding (AoB; n = 8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics (31P-magnetic resonance spectroscopy). Physiological assessments were conducted at a 4-wk time point after MI or AoB surgery. Comparisons were made with size-matched normal animals (normal; n = 8). Both MI and AoB instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group ( P < 0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from that in normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of PCr/ATP decreased from 1.98 ± 0.16 (normal) to 1.06 ± 0.30 (MI; P < 0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, P < 0.01 vs. normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3