Author:
Cabrales Pedro,Tsai Amy G.,Intaglietta Marcos
Abstract
The O2-carrying blood substitute based on polymerized bovine hemoglobin (PBH) was used to determine efficacy in maintaining tissue Po2after an 80% isovolemic blood exchange leading to a hematocrit of 19% [5.4 g Hb/dl from red blood cells (RBCs) and 6.3 g Hb/dl from PBH]. Effects were studied in terms of O2delivery, O2extraction, and tissue Po2at the microcirculatory level at 1, 12, and 24 h after exchange transfusion in awake hamsters prepared with a window chamber model. At 1 h after exchange, arteriolar and venular diameters were decreased compared with baseline. Arteriolar diameter did not fully recover at 12 h after exchange, but venular diameter returned to normal. At 24 h after exchange, arteriolar and venular diameters were not different from baseline. Combining diameter and flow velocity data allowed us to calculate arteriolar and venular flows. At 1 h after exchange, arteriolar and venular flow was reduced compared with baseline. Arteriolar flow was lower at 12 h after exchange and recovered after 24 h. The number of capillaries with RBC passage [functional capillary density (FCD)] at 1 h after exchange with PBH was significantly lower than baseline. FCD remained decreased at 12 h; at 24 h after exchange transfusion, FCD was fully recovered. Tissue Po2was maximal at 1 h after exchange and decreased progressively at 12 and 24 h after exchange. O2release to the tissue was minimal at 1 h and increased at 12 and 24 h after exchange. These results suggest the impairment of tissue O2metabolism after introduction of PBH into the circulation, which is mitigated as PBH concentration declines.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献