Involvement of calcium-calmodulin-dependent protein kinase II in endothelin receptor expression in rat cerebral arteries

Author:

Waldsee Roya1,Ahnstedt Hilda1,Eftekhari Sajedeh1,Edvinsson Lars1

Affiliation:

1. Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden

Abstract

Experimental cerebral ischemia and organ culture of cerebral arteries result in the enhanced expression of endothelin ETB receptors in smooth muscle cells via increased transcription. The present study was designed to evaluate the involvement of calcium-calmodulin-dependent protein kinase (CAMK) in the transcriptional expression of endothelin receptors after organ culture. Rat basilar arteries were incubated for 24 h with or without the CAMK inhibitor KN93 or ERK1/2 inhibitor U0126. The contractile responses to endothelin-1 (ET-1; ETA and ETB receptor agonist) and sarafotoxin 6c (S6c; ETB receptor agonist) were studied using a sensitive myograph. The mRNA levels of the ETA and ETB receptors and CAMKII were determined by real-time PCR, and their protein levels were evaluated by immunohistochemistry and Western blot. The mRNA levels of CAMKII and the ETB receptor increased during organ culture, but there was no change in the expression of the ETA receptor. This effect was abolished by coincubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c-induced contraction. Incubating the arteries with KN93, but not U0126, decreased the amount of phosphorylated CAMKII. The inhibitors had no effect on the levels of myosin light chain during organ culture, as measured by Western blot. CAMKII is involved in the upregulation of the endothelin ETB receptor and interacts with the ERK1/2 pathway to enhance receptor expression. CAMKII has no effect on the contractile apparatus in rat cerebral arteries.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3