Measurement of local cerebral blood flow with iodo [14C] antipyrine

Author:

Sakurada O.,Kennedy C.,Jehle J.,Brown J. D.,Carbin G. L.,Sokoloff L.

Abstract

The autoradiographic diffusible tracer technique for the measurement of local cerebral blood flow was originally designed for use with the radioactive, inert gas 131I-labeled trifluoroiodomethane and is applicable only with tracers that exhibit unrestricted diffusion through the blood-brain barrier. Because of the technical problems associated with the use of gaseous tracers, a suitable nonvolatile tracer has been sought. [14C] Antipyrine has been used previously and found to be unsuitable because of limitations in its diffusion through the blood-brain barrier. An analogue of [14C]antipyrine, iodo [14C]antipyrine, exhibits higher partition coefficients than [14C]antipyrine between nonpolar solvents and water and might, therefore, be expected to diffuse more freely through the barrier. Its use as the tracer in the local blood flow technique leads to values considerably above those obtained with [14C]antipyrine in the rat and cat and essentially the same as those obtained with the gas trifluoro[131I]iodomethane in the cat. Iodo[14C]antipyrine appears, therefore, to be a satisfactory nonvolatile tracer for the measurement of local cerebral blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3