A novel model of acute murine hindlimb ischemia

Author:

Crawford Robert S.,Hashmi Faraz F.,Jones John E.,Albadawi Hassan,McCormack Michael,Eberlin Kyle,Entabi Fateh,Atkins Marvin D.,Conrad Mark F.,Austen W. Gerald,Watkins Michael T.

Abstract

The McGivney hemorrhoidal ligator (MHL), a band designed to cause tissue necrosis, is the preferred experimental tool to create hindlimb ischemia-reperfusion (I/R) injury in rodents. This report defines and compares the ex vivo band tension exerted by MHL and orthodontic rubber bands (ORBs) along with select in vivo characteristics of I/R. As to method, ex vivo band tension was measured over relevant diameters using a tensiometer. In vivo assessment of murine limb perfusion during ischemia with ORB and MHL was compared using laser Doppler imaging and measurement of wet weight-to-dry weight ratio. Neuromuscular scoring and histological extent of muscle fiber injury after I/R with MHL and ORB were also compared. A dose-response curve, between the duration of ORB-induced I/R with both mitochondrial activity (methyl-thiazol-tetrazolium) or tail perfusion [laser Doppler imaging (LDI)], was generated. As a results, ex vivo measurements showed that ORB exerted significantly less force than the MHL. Despite less tension in ORB, in vivo testing of the ORB confirmed complete ischemia by both LDI and wet weight-to-dry weight ratio. After I/R, caused by ORB, there was significantly less neuromuscular dysfunction. Histological assessment confirmed similar degrees of muscle fiber injury after I/R with either the MHL or ORB. Increasing durations of ischemia created by the ORB followed by reperfusion significantly decreased mitochondrial activity and tail perfusion after 24 h of ischemia. In conclusions, ORB produced similar levels of tissue ischemia in murine models of limb I/R with fewer levels of nonspecific injury. ORB may be the preferred model for selected studies of limb I/R.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3