Affiliation:
1. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
Abstract
Microvascular networks undergo patterning changes that determine and reflect functional adaptations during tissue remodeling. Alterations in network architectures are a result of complex and integrated signaling events. To understand how two growth factor signals interact to stimulate angiogenesis and arterialization, we engineered spatially directed microvascular pattern changes in vivo by using combinations of focally delivered exogenous growth factors. We implanted microdelivery beads containing recombinant vascular endothelial growth factor-164 (VEGF164) and recombinant angiopoietin-1* (Ang-1*) into the dorsal subcutaneous tissue of fully anesthetized male Fischer 344 rats implanted with backpack window chambers, and we quantified vascular patterning changes by using intravital microscopy, a combination of architectural metrics, and immunohistochemistry. Focal delivery of VEGF164caused spatially directed increases in both the total number and the density of vessels with diameters <25 μm 7 days after microbead implantation. Increases were maintained out to 14 days but were reduced to control values by day 21. The addition of Ang-1* on day 7 maintained these increases out to day 21, induced vessel order ratios comparable to control levels, and was accompanied by increases in the length density of smooth muscle α-actin-positive vessels. We achieved spatial control of patterning changes in vivo by using multisignal stimulation via focal delivery of exogenous growth factor combinations and conclude that Ang-1* administered subsequent to VEGF164stimulation induces vascular growth while maintaining a network pattern consistent with native patterns that persist in the presence of vehicle control stimulation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献