Load-induced focal adhesion kinase activation in the myocardium: role of stretch and contractile activity

Author:

Domingos Priscila P.1,Fonseca Priscila M.1,Nadruz Wilson1,Franchini Kleber G.1

Affiliation:

1. Department of Internal Medicine, School of Medicine, State University of Campinas, Campinas, São Paulo 13081-970, Brazil

Abstract

We investigated the influence of stretch and contractile activity on load-induced activation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK)1/2 in isolated rat hearts. Increases of diastolic pressure from ∼0 to ∼15 mmHg rapidly increased FAK tyrosine phosphorylation (maximum: 2.3-fold) and binding to c-Src (maximum: 2.8-fold) and Grb2 (maximum: 3.6-fold). This was paralleled by activation (maximum: 2.8-fold) and binding of ERK1/2 to FAK. FAK and ERK1/2 were immunolocalized at sarcolemmal sites of cardiac myocytes and in the nuclei, in the case of ERK1/2. Balloon inflation to raise ventricular pressure in hearts perfused with cardioplegic solution also activated FAK and ERK1/2. However, increases in contractile activity induced by increasing calcium concentration in the perfusate (from 0.5 to 5 mM) did not activate the FAK multicomponent signaling complex or ERK1/2 in the myocardium. These results indicate that stretch rather than contractile activity induces FAK and ERK1/2 activation in the myocardium. In addition, the activation and binding of ERK1/2 to FAK suggest that FAK drives the load-induced activation of ERK1/2.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3