A 1-D model to explore the effects of tissue loading and tissue concentration gradients in the revised Starling principle

Author:

Zhang Xiaobing,Adamson Roger H.,Curry Fitz-Roy E.,Weinbaum Sheldon

Abstract

The recent experiments in Hu et al. ( Am J Physiol Heart Circ Physiol 279: H1724–H1736, 2000) and Adamson et al. ( J Physiol 557: 889–907, 2004) in frog and rat mesentery microvessels have provided strong evidence supporting the Michel-Weinbaum hypothesis for a revised asymmetric Starling principle in which the Starling force balance is applied locally across the endothelial glycocalyx layer rather than between lumen and tissue. These experiments were interpreted by a three-dimensional (3-D) mathematical model (Hu et al.; Microvasc Res 58: 281–304, 1999) to describe the coupled water and albumin fluxes in the glycocalyx layer, the cleft with its tight junction strand, and the surrounding tissue. This numerical 3-D model converges if the tissue is at uniform concentration or has significant tissue gradients due to tissue loading. However, for most physiological conditions, tissue gradients are two to three orders of magnitude smaller than the albumin gradients in the cleft, and the numerical model does not converge. A simpler multilayer one-dimensional (1-D) analytical model has been developed to describe these conditions. This model is used to extend Michel and Phillips’s original 1-D analysis of the matrix layer ( J Physiol 388: 421–435, 1987) to include a cleft with a tight junction strand, to explain the observation of Levick ( Exp Physiol 76: 825–857, 1991) that most tissues have an equilibrium tissue concentration that is close to 0.4 lumen concentration, and to explore the role of vesicular transport in achieving this equilibrium. The model predicts the surprising finding that one can have steady-state reabsorption at low pressures, in contrast to the experiments in Michel and Phillips, if a backward-standing gradient is established in the cleft that prevents the concentration from rising behind the glycocalyx.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference14 articles.

1. Oncotic pressures opposing filtration across non-fenestrated rat microvessels

2. Mechanism of Osmotic Flow in Porous Membranes

3. Curry FE. Mechanics and thermodynamics of transcapillary exchange. In: Handbook of Physiology. Microcirculation. Bethesda, MD: Am Physiol Soc, 1984, sect. 2, vol. IV, pt. I, chapt. 8, p. 309–374.

4. Starling forces that oppose filtration after tissue oncotic pressure is increased

5. A New View of Starling's Hypothesis at the Microstructural Level

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3