Author:
Cortez Dolores M.,Feldman Marc D.,Mummidi Srinivas,Valente Anthony J.,Steffensen Bjorn,Vincenti Matthew,Barnes Jeffrey L.,Chandrasekar Bysani
Abstract
Matrix metalloproteinases (MMPs) degrade collagen and mediate tissue remodeling. The novel cytokine IL-17 is expressed during various inflammatory conditions and modulates MMP expression. We investigated the effect of IL-17 on MMP-1 expression in primary human cardiac fibroblasts (HCF) and delineated the signaling pathways involved. HCF were treated with recombinant human IL-17. MMP-1 expression was analyzed by Northern blotting, RT-quantitative PCR, Western blotting, and ELISA; transcriptional induction and transcription factor binding by EMSA, ELISA, and reporter assay; and p38 MAPK and ERK1/2 activation by protein kinase assays and Western blotting. Signal transduction pathways were investigated using pharmacological inhibitors, small interfering RNA (siRNA), and adenoviral dominant-negative expression vectors. IL-17 stimulated MMP-1 gene transcription, net mRNA levels, protein, and promoter-reporter activity in HCF. This response was blocked by IL-17 receptor-Fc chimera and IL-17 receptor antibodies, but not by IL-6, TNF-α, or IL-1β antibodies. IL-17-stimulated type I collagenase activity was inhibited by the MMP inhibitor GM-6001 and by siRNA-mediated MMP-1 knockdown. IL-17 stimulated activator protein-1 [AP-1 (c-Fos, c-Jun, and Fra-1)], NF-κB (p50 and p65), and CCAAT enhancer-binding protein (C/EBP)-β DNA binding and reporter gene activities, effects attenuated by antisense oligonucleotides, siRNA-mediated knockdown, or expression of dominant-negative signaling proteins. Inhibition of AP-1, NF-κB, or C/EBP activation attenuated IL-17-stimulated MMP-1 expression. IL-17 induced p38 MAPK and ERK1/2 activation, and inhibition by SB-203580 and PD-98059 blunted IL-17-mediated transcription factor activation and MMP-1 expression. Our data indicate that IL-17 induces MMP-1 in human cardiac fibroblasts directly via p38 MAPK- and ERK-dependent AP-1, NF-κB, and C/EBP-β activation and suggest that IL-17 may play a critical role in myocardial remodeling.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology