Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients

Author:

Picchi Andrea1,Limbruno Ugo1,Focardi Marta1,Cortese Bernardo1,Micheli Andrea1,Boschi Letizia2,Severi Silva1,De Caterina Raffaele3

Affiliation:

1. Department of Cardiology, Misericordia Hospital, Grosseto;

2. Department of Physiology, University of Siena, Siena; and

3. Institute of Cardiology and Center of Excellence on Aging, “G. d'Annunzio” University-Chieti, Chieti, Italy

Abstract

A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (Tmn); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic Tmn. We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4–3.2) vs. 4.1 (2.7–4.4); P = 0.02]. Basal Tmn was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25–0.71) vs. 0.64 (0.50–1.17); P = 0.04], while hyperemic Tmn and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index ( r2 = 0.35; P = 0.0005) and between basal Tmn and the HOMA index ( r2 = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3