Endothelial heparanase secretion after acute hypoinsulinemia is regulated by glucose and fatty acid

Author:

Wang Fang,Kim Min Suk,Puthanveetil Prasanth,Kewalramani Girish,Deppe Sylvia,Ghosh Sanjoy,Abrahani Ashraf,Rodrigues Brian

Abstract

Following diabetes, the heart increases its lipoprotein lipase (LPL) at the coronary lumen by transferring LPL from the cardiomyocyte to the endothelial lumen. We examined how hyperglycemia controls secretion of heparanase, the enzyme that cleaves myocyte heparan sulphate proteoglycan to initiate this movement. Diazoxide (DZ) was used to decrease serum insulin and generate hyperglycemia. A modified Langendorff technique was used to separate coronary from interstitial effluent, which were assayed for heparanase and LPL. Within 30 min of DZ, interstitial heparanase increased, an effect that closely mirrored an augmentation in interstitial LPL. Endothelial cells were incubated with palmitic acid (PA) or glucose, and heparanase secretion was determined. PA increased intracellular heparanase, with no effect on secretion of this enzyme. Unlike PA, glucose dose-dependently lowered endothelial intracellular heparanase, which was strongly associated with increased heparanase activity in the incubation medium. Preincubation with cytochalasin D or nocodazole prevented the high glucose-induced depletion of intracellular heparanase. Our data suggest that following hyperglycemia, translocation of LPL from the cardiomyocyte cell surface to the apical side of endothelial cells is dependent on the ability of the fatty acid to increase endothelial intracellular heparanase followed by rapid secretion of this enzyme by glucose, which requires an intact microtubule and actin cytoskeleton.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3