Nonocclusive multivessel intracoronary infusion of allogeneic cardiosphere-derived cells early after reperfusion prevents remote zone myocyte loss and improves global left ventricular function in swine with myocardial infarction

Author:

Suzuki Gen12,Weil Brian R.32,Young Rebeccah F.12,Fallavollita James A.412,Canty John M.41352

Affiliation:

1. Department of Medicine, University at Buffalo, Buffalo, New York

2. Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York

3. Physiology and Biophysics, University at Buffalo, Buffalo, New York

4. Veterans Affairs Western New York Health Care System, Buffalo, New York

5. Biomedical Engineering, University at Buffalo, Buffalo, New York

Abstract

Intracoronary cardiosphere-derived cells (icCDCs) infused into the infarct-related artery reduce scar volume but do not improve left ventricular (LV) ejection fraction (LVEF). We tested the hypothesis that this reflects the inability of regional delivery to prevent myocyte death or promote myocyte proliferation in viable myocardium remote from the infarct. Swine ( n = 23) pretreated with oral cyclosporine (200 mg/day) underwent a 1-h left anterior descending coronary artery (LAD) occlusion, which reduced LVEF from 61.6 ± 1.0 to 45.3 ± 1.5% 30 min after reperfusion. At that time, animals received global infusion of allogeneic icCDCs ( n = 8), regional infusion of icCDCs restricted to the LAD using the stop-flow technique ( n = 8), or vehicle ( n = 7). After 1 mo, global icCDCs increased LVEF from 44.8 ± 1.9 to 60.8 ± 3.8% ( P < 0.05) with no significant change after LAD stop-flow icCDCs (44.8 ± 3.6 to 50.9 ± 3.1%) or vehicle (46.5 ± 2.5 to 47.7 ± 2.6%). In contrast, global icCDCs did not alter infarct volume (%LV mass) assessed at 2 days (11.2 ± 2.3 vs. 12.6 ± 2.3%), whereas it was reduced after LAD stop-flow icCDCs (7.1 ± 1.1%, P < 0.05). Histopathological analysis of remote myocardium after global icCDCs demonstrated a significant increase in myocyte proliferation (147 ± 32 vs. 14 ± 10 nuclei/106 myocytes, P < 0.05) and a reduction in myocyte apoptosis (15 ± 9 vs. 46 ± 10 nuclei/106 myocytes, P < 0.05) that increased myocyte nuclear density (1,264 ± 39 vs. 1,157 ± 33 nuclei/mm2, P < 0.05) and decreased myocyte diameter (13.2 ± 0.2 vs. 14.5 ± 0.3 μm, P < 0.05) compared with vehicle-treated controls. In contrast, remote zone changes after regional LAD icCDCs were no different from vehicle. These data indicate that changes in global LVEF after icCDCs are dependent upon preventing myocyte loss and hypertrophy in myocardium remote from the infarct. These arise from stimulating myocyte proliferation and reducing myocyte apoptosis indicating the importance of directing cell therapy to viable remote regions. NEW & NOTEWORTHY Administration of allogeneic cardiosphere-derived cells to the entire heart via global intracoronary infusion shortly after myocardial infarction favorably influenced left ventricular ejection fraction by preventing myocyte death and promoting myocyte proliferation in remote, noninfarcted myocardium in swine. In contrast, regional intracoronary cell infusion did not significantly affect remote zone myocyte remodeling. Global cell administration targeting viable myocardium remote from the infarct may be an effective approach to prevent adverse ventricular remodeling after myocardial infarction.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

New York State Department of Health (NYSDOH)

Albert and Elizabeth Rekate Fund

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3