The importance of elastin to aortic development in mice

Author:

Wagenseil Jessica E.1,Ciliberto Christopher H.2,Knutsen Russell H.2,Levy Marilyn A.2,Kovacs Attila3,Mecham Robert P.2

Affiliation:

1. Department of Biomedical Engineering, Saint Louis University, and

2. Departments of 2Cell Biology and

3. Internal Medicine, Washington University, St. Louis, Missouri

Abstract

Elastin is an essential component of vertebrate arteries that provides elasticity and stores energy during the cardiac cycle. Elastin production in the arterial wall begins midgestation but increases rapidly during the last third of human and mouse development, just as blood pressure and cardiac output increase sharply. The aim of this study is to characterize the structure, hemodynamics, and mechanics of developing arteries with reduced elastin levels and determine the critical time period where elastin is required in the vertebrate cardiovascular system. Mice that lack elastin ( Eln−/−) or have approximately one-half the normal level ( Eln+/−) show relatively normal cardiovascular development up to embryonic day (E) 18 as assessed by arterial morphology, left ventricular blood pressure, and cardiac function. Previous work showed that just a few days later, at birth, Eln−/−mice die with high blood pressure and tortuous, stenotic arteries. During this period from E18 to birth, Eln+/−mice add extra layers of smooth muscle cells to the vessel wall and have a mean blood pressure 25% higher than wild-type animals. These findings demonstrate that elastin is only necessary for normal cardiovascular structure and function in mice starting in the last few days of fetal development. The large increases in blood pressure during this period may push hemodynamic forces over a critical threshold where elastin becomes required for cardiovascular function. Understanding the interplay between elastin amounts and hemodynamic forces in developing vessels will help design treatments for human elastinopathies and optimize protocols for tissue engineering.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3