Fine temporal structure of cardiorespiratory synchronization

Author:

Ahn Sungwoo1,Solfest Jessica1,Rubchinsky Leonid L.12

Affiliation:

1. Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana; and

2. Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

Cardiac and respiratory rhythms are known to exhibit a modest degree of phase synchronization, which is affected by age, diseases, and other factors. We study the fine temporal structure of this synchrony in healthy young, healthy elderly, and elderly subjects with coronary artery disease. We employ novel time-series analysis to explore how phases of oscillations go in and out of the phase-locked state at each cycle of oscillations. For the first time we show that cardiorespiratory system is engaged in weakly synchronized dynamics with a very specific temporal pattern of synchrony: the oscillations go out of synchrony frequently, but return to the synchronous state very quickly (usually within just 1 cycle of oscillations). Properties of synchrony depended on the age and disease status. Healthy subjects exhibited more synchrony at the higher (1:4) frequency-locking ratio between respiratory and cardiac rhythms, whereas subjects with coronary artery disease exhibited relatively more 1:2 synchrony. However, multiple short desynchronization episodes prevailed regardless of the age and disease status. The same average synchrony level could be alternatively achieved with few long desynchronizations, but this was not observed in the data. This implies functional importance of short desynchronization dynamics. These dynamics suggest that a synchronous state is easy to create if needed but is also easy to break. Short desynchronization dynamics may facilitate the mutual coordination of cardiac and respiratory rhythms by creating intermittent synchronous episodes. It may be an efficient background dynamics to promote adaptation of cardiorespiratory coordination to various external and internal factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3