Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise

Author:

Fernandes Igor A.1,Mattos João D.1,Campos Monique O.1,Machado Alessandro C.1,Rocha Marcos P.1,Rocha Natalia G.1,Vianna Lauro C.2,Nobrega Antonio C. L.1

Affiliation:

1. Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Rio de Janeiro, Brazil; and

2. Faculty of Physical Education, University of Brasilia, Distrito Federal, Brazil

Abstract

Handgrip-induced increases in blood flow through the contralateral artery that supplies the cortical representation of the arm have been hypothesized as a consequence of neurovascular coupling and a resultant metabolic attenuation of sympathetic cerebral vasoconstriction. In contrast, sympathetic restraint, in theory, inhibits changes in perfusion of the cerebral ipsilateral blood vessels. To confirm whether sympathetic nerve activity modulates cerebral blood flow distribution during static handgrip (SHG) exercise, beat-to-beat contra- and ipsilateral internal carotid artery blood flow (ICA; Doppler) and mean arterial pressure (MAP; Finometer) were simultaneously assessed in nine healthy men (27 ± 5 yr), both at rest and during a 2-min SHG bout (30% maximal voluntary contraction), under two experimental conditions: 1) control and 2) α1-adrenergic receptor blockade. End-tidal carbon dioxide (rebreathing system) was clamped throughout the study. SHG induced increases in MAP (+31.4 ± 10.7 mmHg, P < 0.05) and contralateral ICA blood flow (+80.9 ± 62.5 ml/min, P < 0.05), while no changes were observed in the ipsilateral vessel (−9.8 ± 39.3 ml/min, P > 0.05). The reduction in ipsilateral ICA vascular conductance (VC) was greater compared with contralateral ICA (contralateral: −0.8 ± 0.8 vs. ipsilateral: −2.6 ± 1.3 ml·min−1·mmHg−1, P < 0.05). Prazosin was effective to induce α1-blockade since phenylephrine-induced increases in MAP were greatly reduced ( P < 0.05). Under α1-adrenergic receptor blockade, SHG evoked smaller MAP responses (+19.4 ± 9.2, P < 0.05) but similar increases in ICAs blood flow (contralateral: +58.4 ± 21.5 vs. ipsilateral: +54.3 ± 46.2 ml/min, P > 0.05) and decreases in VC (contralateral: −0.4 ± 0.7 vs. ipsilateral: −0.4 ± 1.0 ml·min−1·mmHg−1, P > 0.05). These findings indicate a role of sympathetic nerve activity in the regulation of cerebral blood flow distribution during SHG.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cerebral sympatholysis: experiments on in vivo cerebrovascular regulation and ex vivo cerebral vasomotor control;American Journal of Physiology-Heart and Circulatory Physiology;2024-05-01

2. Acute isometric and dynamic exercise do not alter cerebral sympathetic nerve activity in healthy humans;Journal of Cerebral Blood Flow & Metabolism;2024-04-13

3. Neurogenic Regulation of Cerebral Blood Flow;Российский физиологический журнал им  И  М  Сеченова;2023-12-01

4. Neurogenic Regulation of Cerebral Blood Flow;Journal of Evolutionary Biochemistry and Physiology;2023-11

5. Cerebral endothelium-dependent function and reactivity to hypercapnia: the role of α1-adrenoreceptors;Journal of Applied Physiology;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3