EDRF suppresses chaotic pressure oscillations in isolated resistance artery without influencing intrinsic complexity

Author:

Griffith T. M.1,Edwards D. H.1

Affiliation:

1. Department of Diagnostic Radiology, University of Wales College ofMedicine, Heath Park, Cardiff, United Kingdom.

Abstract

It is now widely recognized that nonlinear oscillatory systems can exhibit simple periodicity, characteristic repetitive patterns of odd and even integral periodicity and specific pathways for the transition to irregular, so-called "chaotic," dynamics. In the present study we have identified such behavior in the highly irregular rhythmic vasomotor activity induced by histamine in isolated rabbit ear resistance arteries, thus suggesting a deterministic rather than random etiology. In this experimental model nonlinearity arises at the level of the vascular smooth muscle cell, since oscillatory behavior was not abolished by endothelial denudation. To quantify the complexity of the responses induced by histamine, we applied the analysis of Grassberger and Proccacia (Physica D 9: 189-208, 1983) to calculate a scaling parameter known as fractal dimension, which estimates the minimum number of control variables participating in the genesis of an irregular time-varying signal. The findings suggest the involvement of at least three such variables, because its average numerical value was generally found to be between 2 and 3. Neither the absolute concentration of histamine employed nor pharmacological manipulation (i.e., stimulation/inhibition) of endothelium-derived relaxing factor (EDRF) activity significantly affected the fractal dimension of the pressure fluctuations, although both influenced their superficial form. Histamine and EDRF consequently do not determine the fundamental interactions responsible for generating the chaotic nature of the responses and may be regarded as permissive and modulatory influences, respectively. The well-known unpredictability of nonlinear systems to perturbation may explain why EDRF can either suppress or enhance rhythmic vasomotor activity in different artery types.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3