Measuring activation patterns of the heart at a microscopic size scale with thin-film sensors

Author:

Hofer E.1,Urban G.1,Spach M. S.1,Schafferhofer I.1,Mohr G.1,Platzer D.1

Affiliation:

1. Institut fur Medizinische Physik und Biophysik,Karl-Franzens-Universitat, Graz, Austria.

Abstract

To study the spread of excitation in ventricular heart preparations we have designed a fast, high-resolution recording and mapping system. Papillary muscles were dissected from the isolated guinea pig hearts. The preparation was fixed in a tissue bath and superfused with Tyrode solution. Linear and two-dimensional arrays of Ag/AgCl electrodes were made on glass with a thin-film technique. The transparent sensors with up to 24 electrodes (spaced 50, 90, or 180 microns apart) were positioned close to the surface of the preparation with a custom-designed three-dimensional micromanipulator. Extracellular signals were simultaneously recorded by a 24-channel data acquisition system with a 200 kHz per channel sample rate, with 12-bit amplitude resolution and a maximum data length of up to 3 MB. Digitized video images of the electrode array and the underlaying preparation were used to identify the locations of the recording sites. A UNIX-based computer system with a custom-designed data acquisition and database program was used to control the instruments and to manage the experimental data. This technique gave signals with excellent signal-to-noise ratios (up to 65 dB) and permitted accurate evaluation of the time and the site of the local activation with high resolution (to within 5 microseconds, 50 microns). We describe the spread of excitation within the area of a few cells and found a substantial dispersion of conduction velocities. Beat-to-beat comparison of activation patterns showed relatively small variations in the spread of excitation (a few microseconds).

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3