Microvascular compression during myocardial ischemia: mechanistic basis for no-reflow phenomenon

Author:

Manciet L. H.1,Poole D. C.1,McDonagh P. F.1,Copeland J. G.1,Mathieu-Costello O.1

Affiliation:

1. Department of Surgery, University of Arizona Health Sciences Center,Tucson 85724-0001.

Abstract

Alterations in fiber size and capillary diameter were highly correlated with perfusion deficits after myocardial ischemia. After 5 (n = 3) and 30 (n = 5) min of global normothermic ischemia, isolated rabbit hearts were perfused with India ink and then with glutaraldehyde. Morphometric techniques were used to determine mean fiber cross-sectional area [a(f)], mean effective capillary diameter [d(c)], total and perfused capillary number per fiber area, and capillary length per fiber volume in subepicardium (Epi) and subendocardium (Endo). Sarcomere length was measured to differentiate between effects of fiber shortening and intracellular edema on a(f). After 30 min of ischemia, a(f) increased 41 (Epi) and 36% (Endo). Of these percentages, fiber shortening accounted for 2 (Epi) and 25% (Endo). Decreased d(c) was correlated with increased a(f) as well as reductions in perfused capillary number and length. Whereas intracellular edema had the greatest overall effect on a(f), fiber shortening accounted for a significant increase of a(f) in Endo, where perfusion deficits were most pronounced. These data support the hypothesis that microvascular compression consequent to increased a(f) contributes to perfusion deficits after myocardial ischemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3