Affiliation:
1. Department of Cardiology, Royal North Shore Hospital, St. Leonards, Sydney, Australia.
Abstract
The effect on intracellular pH (pHi) of exposure to solutions of progressively increasing osmolarity from 418 to 620 mosM and to hyposmolar solutions (240 mosM) was examined in guinea pig ventricular muscle using ion-selective microelectrodes. Exposure of tissue to 418 mosM Tyrode solution (100 mM sucrose added) produced an intracellular alkalosis of approximately 0.1 U, whereas exposure to 620 mosM solution (300 mM sucrose added) caused an intracellular acidosis of approximately 0.1 U. The maximal rate of recovery of pHi from acidosis induced by an NH4Cl prepulse increased progressively as extracellular osmolarity was raised from 310 to 620 mosM. This suggests that the acidosis observed at steady state in 620 mosM solution is not due to inhibition of the Na(+)-H+ exchanger. In the presence of 10 microM ryanodine, exposure to 620 mosM solution produced a sustained intracellular alkalosis. We suggest that the decrease in pHi during exposure to 620 mosM solution is due, at least in part, to the acidifying influence of Ca2+ release from the sarcoplasmic reticulum. This decrease in pHi is expected to contribute to the negative inotrop reported in studies of cardiac contractility in markedly hyperosmolar solutions. There was no change in pHi when tissue was exposed to hyposmolar solution. However, the maximal rate of recovery of pHi from acidosis was slower in hyposmolar than in isosmolar solution, despite a concomitant decrease in the intracellular buffer capacity. This suggests that osmotic cell swelling results in inhibition of the sarcolemmal Na(+)-H+ exchanger.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献