Identification of microvascular transport pathways in skeletal muscle

Author:

Wolf M. B.1

Affiliation:

1. Department of Physiology, University of South Carolina, School of Medicine, Columbia 29208.

Abstract

The solvent-drag reflection coefficient (sigma f) was measured from plasma disappearance (integral-mass balance method) for native albumin and four fluorescent solutes of radii from 2 to 16 nm in the isolated, plasma-perfused cat hindlimb preparation. The data for the smallest solutes were measured > 2 h after tracer addition and at high filtration rates to avoid underestimation of sigma f due to tracer diffusion. A two-pore model was fit (small-pore and large-pore radii, approximately 3.5 and 23 nm, respectively, 84% of hydraulic capacity in small pores) to these data using an objective computer-based estimation procedure. In the model, membrane sigma f was determined by flow weighting the sigma f values for the two pathways. Also, the phenomenon of volume circulation among the pathways was included. In different limbs, the permeability-surface area (PS) product was measured for the smallest solute, alpha-lactalbumin, from its perfusate-disappearance transient and a linear diffusion model. The PS value estimated was 0.11 +/- 0.026 (95% confidence limits) ml.min-1 times 100 g muscle-1. These PS values were found to be coincident with those predicted using parameter sets derived from the multiparameter 95% confidence space consistent with the two-pore model fits. The two-pore model also closely predicted PS data for small solutes from other studies in skeletal muscle; however, it failed to adequately describe small-molecule transport data from osmotic transient studies. It was necessary to add a water-exclusive pathway (40% of total hydraulic capacity) to account for these latter data; however, the predictions with this addition were still consistent with the data measured in the present study. We conclude that pore models can describe both macromolecular and small solute reflection coefficient and PS data in skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3