Modulation of platelet function by reactive oxygen metabolites

Author:

Ambrosio G.1,Golino P.1,Pascucci I.1,Rosolowsky M.1,Campbell W. B.1,DeClerck F.1,Tritto I.1,Chiariello M.1

Affiliation:

1. Division of Cardiology, Federico II School of Medicine, Naples, Italy.

Abstract

Reactive oxygen metabolites have been reported to affect platelet aggregation. However, this phenomenon is still poorly understood. In the present study we investigated the effects of superoxide radical and hydrogen peroxide (H2O2) on platelet function in vitro and correlated those effects to possible changes of platelet concentrations of cyclic nucleotides and thromboxane, since these systems play a key role in the response of platelets to activating stimuli. Human platelets were exposed to xanthine-xanthine oxidase (X-XO), a system that generates both superoxide radicals and H2O2. Sixty seconds of incubation with X-XO impaired aggregation in response to ADP (by 48%), collagen (by 71%), or the thromboxane mimetic U-46619 (by 50%). This effect was reversible and occurred in the absence of cell damage. Impairment of aggregation in platelets exposed to X-XO was due to H2O2 formation, since it was prevented by catalase but not by superoxide dismutase. Similarly, incubation with the pure H2O2 generator glucose-glucose oxidase also markedly inhibited ADP-induced platelet aggregation in a dose-dependent fashion. Impaired aggregation by H2O2 was accompanied by a > 10-fold increase in platelet concentrations of guanosine 3',5'-cyclic monophosphate (cGMP), whereas adenosine 3',5'-cyclic monophosphate levels remained unchanged. The inhibitory role of increased cGMP formation was confirmed by the finding that H2O2-induced impairment of platelet aggregation was largely abolished when guanylate cyclase activation was prevented by incubating platelets with the guanylate cyclase inhibitor, LY-83583. Different effects were observed when arachidonic acid was used to stimulate platelets. Exposure to a source of H2O2 did not affect aggregation to arachidonate. Furthermore, in the absence of exogenous H2O2, incubation with catalase, which had no effects on platelet response to ADP, collagen, or U-46619, virtually abolished platelet aggregation and markedly reduced thromboxane B2 production (to 44% of control) when arachidonic acid was used as a stimulus. In conclusion, our data demonstrate that H2O2 may exert complex effects on platelet function in vitro. Low levels of endogenous H2O2 seem to be required to promote thromboxane synthesis and aggregation in response to arachidonic acid. In contrast, exposure to larger (but not toxic) concentrations of exogenous H2O2 may inhibit aggregation to several agonists via stimulation of guanylate cyclase and increased cGMP formation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3