Sodium depletion in conscious cynomolgus monkeys attenuates baroreflex sensitivity independently of prostaglandins

Author:

Panzenbeck M. J.1,Harrison P. C.1,Madwed J. B.1,McFarland M. L.1,Winquist R. J.1,Frei P.1,Weldon S.1,Desai S. N.1

Affiliation:

1. Pharmacology Department, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut 06877–0368.

Abstract

We tested the hypothesis that baroreflex attenuation during sodium depletion is due to increased prostaglandin (PG) levels. We studied baroreflex sensitivity before and after PG synthesis inhibition in conscious cynomolgus monkeys. Arterial pressure and pulse interval (PI) were measured during intravenous infusions of phenylephrine (1–20 micrograms.kg-1.min-1, n = 6) and nitroprusside (1–10 micrograms.kg-1.min-1, n = 7). Infusions were repeated 30 min after indomethacin (Indo, 6 mg/kg iv). The slope (in ms/mmHg) of the mean arterial blood pressure-PI plot was used as an index of baroreflex sensitivity. Plasma renin activity (PRA) was elevated (47.9 +/- 9.7 vs. 8.8 +/- 3.3 ng angiotensin I.ml-1.h-1) after sodium depletion (P < 0.05). Baroreflex sensitivity to hypotension and hypertension was significantly (P < 0.05) attenuated by sodium depletion (3.69 +/- 0.9 vs. 0.9 +/- 0.1 ms/mmHg and 7.38 +/- 0.6 vs. 5.04 +/- 0.9 ms/mmHg, respectively). Indo decreased PRA to 28.6 +/- 5.7 ng angiotensin I.ml-1.h-1 (P < 0.05) in sodium-depleted monkeys and decreased heart rate -21 +/- 3.7 from a baseline of 166 +/- 9.40 beats/min in normal monkeys and -22 +/- 2.9 from a baseline of 191 +/- 7.9 beats/min in low-sodium monkeys (P < 0.05). Indo did not significantly change baroreflex sensitivity in either group. Thus the baroreflex was attenuated in conscious nonhuman primates during sodium depletion; acute PG synthesis blockade did not improve baroreflex sensitivity. Indo decreased heart rate without changing arterial pressure; suggesting that PGs caused a downward resetting of the pressure-heart rate relationship.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3