Flow pulsation and network structure in mesenteric microvasculature of rats

Author:

Seki J.1

Affiliation:

1. Department of Biomedical Engineering, National Cardiovascular Center Research Institute, Osaka, Japan.

Abstract

Red cell velocity was measured by a fiber-optic laser-Doppler anemometer microscope in microvessels of the mesentery of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto control rats (WKY) with high temporal resolution. Based on the velocity data, the propagation velocity of flow pulse along single microvessels as well as the arteriovenous distributions of the mean volumetric flow, the amplitude of flow pulsation, and the phase lag of the flow relative to the systemic pressure were analyzed in relationship to the vessel wall rheology and the network topology. The propagation velocity was 3.5–134 cm/s in arterioles of 12–43 microns in diameter, and it increased with increasing diameter. The mean volumetric flow exhibited a power law relationship to the vessel diameter, in which the exponents were 3.16 and 3.30 for arterioles and 3.03 and 2.85 for venules in SHR and WKY, respectively. The exponents for arterioles were > 3 (P < 0.1) and different between SHR and WKY (P < 0.12). The amplitude of the flow pulsation also varied in a power law with the vessel diameter, whose exponents for arterioles were 3.41 and 3.52 for SHR and WKY, respectively. The flow phase lag increased gradually with decreasing vessel diameter in arterioles and increased comparatively rapidly with increasing vessel diameter in venules, which suggests more compliant vessel walls for venules than arterioles. The slope of the increase in the flow phase lag with the vessel diameter in arterioles of SHR was larger than that for WKY (P < 0.05). This difference in the flow phase lag distribution and the difference in the exponent of the mean flow rate vs. diameter relationship may reflect that the number of small arterioles relative to large ones is reduced in SHR microvasculature compared with that in WKY.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3