Affiliation:
1. Department of Physiology, School of Medicine, University of New Mexico, Albuquerque 87131.
Abstract
Nitric oxide (NO) is known to elicit vasodilation in the preconstricted rat lung. However, the sites of dilation within the pulmonary vasculature remain unknown. We hypothesized that donated NO would dilate all areas of constriction within the pulmonary vasculature, whereas receptor-mediated, NO-induced dilations would correspond to regional binding of agents. Isolated lungs from male Sprague-Dawley rats were perfused at constant flow with physiological saline solution. Pulmonary arterial and pulmonary venous pressures were monitored, while pulmonary microvascular pressures were estimated by vascular occlusion. Lungs were constricted with U-46619, and upon development of a stable degree of vasoconstriction, the NO donor sodium nitroprusside or the endothelium-dependent dilators A23187, arginine vasopressin, or ATP were administered. U-46619 caused constriction of both arterial and venous segments. Administration of sodium nitroprusside and the calcium ionophore A23187 elicited similar dilation of preconstricted arterial and venous segments. Arginine vasopressin significantly dilated both arterial and venous segments, with a greater reversal of venous resistance. In contrast, ATP significantly reduced arterial resistance more than venous. These results demonstrate that donated NO uniformly dilates all constricted regions of the pulmonary vasculature. However, receptor-mediated, endothelium-dependent dilators display characteristic heterogeneities in the sites of decreased pulmonary vascular resistance.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献