Affiliation:
1. Center for Biomedical Engineering, University of California, SanDiego, La Jolla 92093.
Abstract
This is a third part of tripartite morphometric data of the pig coronary blood vessels, giving a complete quantitative description of the arterial tree [Kassab et al., Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H350-H365, 1993], capillary network [Kassab and Fung, Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H319-H325, 1994], and venous tree (this article). Together they provide the quantitative anatomic foundation for coronary hemodynamics. The coronary venules have a unique morphology. Unlike coronary arterioles, which have cylindrical cross sections and a fairly constant diameter in each segment, the venules have approximately elliptical cross sections, are usually wavy in the longitudinal direction, and often converge like fingers to a hand. Measurements were made with the silicone elastomer casting method on five pig hearts. Data on smaller vessels were obtained from histological specimens by optical sectioning. Data on larger vessels were obtained from vascular casts. Arcading veins and anastomoses on the epicardial surface have a unique topology. Data on the number of vessels in each order, the major and minor axes, length, connectivity matrix, and the fractions of the vessels of a given order connected in series in all orders of vessels of the sinusal and thebesian veins are presented. It is shown that of the blood in the coronary blood vessels of a pig heart 27.4% is in the arteries (> 200 microns), 37.1% is in veins (> 200 microns), and 35.5% is in microcirculation (< 200 microns), of which 89.4% is in the capillaries.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献