Differential effects of wave reflections and peripheral resistance on aortic blood pressure: a model-based study

Author:

Berger D. S.1,Li J. K.1,Noordergraaf A.1

Affiliation:

1. Department of Biomedical Engineering, Rutgers University, Piscataway,New Jersey 08855.

Abstract

It has been generally accepted that arterial system wave reflections act to increase aortic blood pressure and the load placed on the left ventricle. Using a mathematical model of the coupled left ventricle-arterial system, we predict that this is not the case. With the model, two aspects of wave reflection, the global reflection coefficient [TG(omega)] and the pulse wave velocity (cph), were adjusted independently. In addition, TG(omega) and cph could be altered independently of the direct-current properties of the arterial system model. Reduction of TG(omega) yielded increases in stroke volume (SV) as well as in peak systolic (Ps), diastolic (Pd), and mean aortic (Pao) pressures and, hence, increased the load on the left ventricle. SV and Pao increased only in the range where strong reflection occurs. Reduced cph also yielded higher pressures, whereas increased cph resulted in reduced Pao and Pd but increased Ps. The changes in pressures and SV in response to altered TG(omega) and cph were relatively small compared with absolute levels. Simulated vasoconstriction and vasodilation further demonstrated the much greater importance of peripheral resistance on pressure and SV levels and lead to the prediction that pressure reduction in vasodilation occurs not because of, but in spite of, reduced wave reflections. We conclude that these results have not yet been observed experimentally, because reflection cannot yet be separated from the direct-current properties of the arterial system; therefore wave reflections themselves have not yet been adequately studied in the intact animal.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3