Affiliation:
1. Department of Physiology, McGill University, Montreal, Quebec, Canada.
Abstract
Outward currents were measured in single rabbit atrial myocytes using the whole cell configuration of the patch-clamp technique in the presence of tetrodotoxin (5–10 microM) and MnCl2 (2 mM) to block inward currents. Depolarizing voltage-clamp steps from a holding potential of -80 mV elicited a predominant 4-aminopyridine (4-AP)-sensitive transient outward current (Ito). Inhibitors of oxidative metabolism, 2,4-dinitrophenol (DNP; 100 microM) and cyanide (3 mM) abolished Ito and caused a large increase in the steady-state outward current. This steady-state outward current was inhibited by glibenclamide (5 microM), a blocker of the ATP-regulated potassium current (IKATP). In the presence of DNP, glibenclamide (5 microM) not only inhibited IKATP but also partially restored Ito. Absence of ATP from the pipette produced effects on outward currents similar to those induced by DNP or cyanide. We conclude that metabolic inhibition abolishes Ito in rabbit atrial myocytes and suggest that ATP may be required for the activation of the channel.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献