Ventricular pacing attenuates but does not reverse cardiac atrophy and an isomyosin shift in the rat heart

Author:

Geenen D. L.1,Malhotra A.1,Buttrick P. M.1,Scheuer J.1

Affiliation:

1. Department of Medicine, Montefiore Medical Center, Bronx, New York10467.

Abstract

The heterotopically transplanted rat heart (TH) undergoes rapid muscle atrophy and a concurrent shift from alpha- to beta-myosin heavy chain (MHC) by 1 wk after surgery. In the current experiments, TH were continuously paced (420 beats/min) for 1 wk beginning 24 h after surgery or for 1 wk beginning 14 days after surgery to determine the role of increased heart rate in preventing or reversing cardiac atrophy. Left ventricular (LV) wet weight (283 vs. 256 mg paced vs. nonpaced) and protein content (32 vs. 23 mg paced vs. nonpaced, P < 0.05) were significantly elevated in TH paced 1 wk after surgery but were unchanged (211 vs. 198 mg and 24 vs. 23 mg LV wet wt and protein content, respectively) in TH paced 2 wk after surgery. Total cardiac protein synthesis in the TH paced immediately after surgery was increased compared with the corresponding nonpaced hearts (5.6 vs. 4.0 mg.mg LV wet wt-1.day-1, P < 0.05), while in the TH, where pacing was initiated 2 wk after surgery, it was unchanged (3.6 vs. 3.7 mg.mg LV wet wt-1.day-1). Fractional synthesis rate was elevated in TH and was not altered by pacing. Pacing the TH also attenuated the shift in alpha-MHC in the first 7 days after surgery but did not reverse the shift 2 wk later. The increase in protein synthesis combined with an unchanged fractional synthesis rate suggests that pacing attenuates cardiac mass by decreasing protein degradation and that once the atrophic process is established, neither synthesis rate nor isomyosin shift can be altered by continuous pacing.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3