Diabetes mellitus attenuates the pressure response against hypotensive stress by impairing the sympathetic regulation of the baroreflex afferent arc

Author:

Kamada Kazuhiro1,Saku Keita2,Tohyama Takeshi1,Kawada Toru3,Mannoji Hiroshi1,Abe Kiyokazu4,Nishikawa Takuya1,Sunagawa Genya1,Kishi Takuya2,Sunagawa Kenji5,Tsutsui Hiroyuki1

Affiliation:

1. Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

2. Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan

3. Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan

4. Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

5. Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan

Abstract

Patients with diabetes mellitus (DM) often show arterial pressure (AP) lability associated with cardiovascular autonomic neuropathy. Because the arterial baroreflex tightly regulates AP via sympathetic nerve activity (SNA), we investigated the systematic baroreflex function, considering the control theory in DM by open-loop analysis. We used Zucker diabetic fatty (ZDF) rats as a type 2 DM model. Under general anesthesia, we isolated the carotid sinuses from the systemic circulation, changed intracarotid sinus pressure (CSP), and recorded SNA and AP responses. We compared CSP-AP (total loop), CSP-SNA (afferent arc), and SNA-AP (efferent arc) relationships between ZDF lean ( n = 8) and ZDF fatty rats ( n = 6). Although the total loop gain of baroreflex (ΔAP/ΔCSP) at the operating point did not differ between the two groups, the average gain in the lower CSP range was markedly reduced in ZDF fatty rats (0.03 ± 0.01 vs. 0.87 ± 0.10 mmHg/mmHg, P < 0.001). The afferent arc showed the same trend as the total loop, with a response threshold of 139.8 ± 1.0 mmHg in ZDF fatty rats. There were no significant differences in the gain of efferent arc between the two groups. Simulation experiments indicated a markedly higher AP fall and lower total loop gain of baroreflex in ZDF fatty rats than in ZDF lean rats against hypotensive stress because the efferent arc intersected with the afferent arc in the SNA unresponsive range. Thus, we concluded that impaired baroreflex sympathetic regulation in the lower AP range attenuates the pressure response against hypotensive stress and may partially contribute to AP lability in DM. NEW & NOTEWORTHY In this study, we investigated the open-loop baroreflex function, considering the control theory in type 2 diabetes mellitus model rats to address the systematic mechanism of arterial pressure (AP) lability in diabetes mellitus. The unresponsiveness of baroreflex sympathetic regulation in the lower AP range was observed in type 2 diabetic rats. It may attenuate the baroreflex pressure-stabilizing function and induce greater AP fall against hypotensive stress.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science (JSPS)

Actelion Academia Prize 2015

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diabetes modulation of the myocardial infarction-acute kidney injury axis;American Journal of Physiology-Heart and Circulatory Physiology;2022-03-01

2. Reinforcing rigor and reproducibility expectations for use of sex and gender in cardiovascular research;American Journal of Physiology-Heart and Circulatory Physiology;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3