Paradoxical coronary microcirculatory constriction during ischemia: a synergic function for nitric oxide and endothelin

Author:

Kusmic Claudia,Lazzerini Guido,Coceani Flavio,Barsacchi Renata,L'Abbate Antonio,Sambuceti Gianmario

Abstract

A paradoxical microcirculatory constriction has been observed in hearts of patients with ischemia, secondary to coronary stenosis. Here, using the isolated mouse heart (Langendorff), we examined the mechanism of this response, assuming involvement of nitric oxide (NO) and endothelin-1 (ET-1) systems. Perfusion pressure was maintained at 65 mmHg for 70 min ( protocol 1), or it was reduced to 30 mmHg over two intervals, between the 20- and 40-min marks ( protocol 2) or from the 20-min mark onward ( protocol 3). In protocol 1, coronary resistance (CR) remained steady in untreated heart, whereas it progressively increased during treatment with the NO synthesis inhibitor NG-nitro-l-arginine methyl ester (l-NAME) (2.7-fold) or the ETA antagonist BQ-610 (2.8 fold). The ETB antagonist BQ-788 had instead no effect by itself but curtailed vasoconstriction to BQ-610. In protocol 2, hypotension raised CR by 2.2-fold. This response was blunted by reactive oxygen species (ROS) scavengers (mannitol and superoxide dismutase plus catalase) and was converted into vasodilation by l-NAME, BQ-610, or BQ-788. Restoration of normal pressure was followed by vasodilation and vasoconstriction, respectively, in untreated and treated preparations. In protocol 3, CR progressively increased with hypotension in the absence but not presence of l-NAME or BQ-610. We conclude that the coronary vasculature is normally relaxed by two concerted processes, a direct action of NO and ET-1 curtailing an ETB2-mediated tonic vasoconstriction through ETA activation. The negative feedback mechanism on ETB2 subsides during hypotension, and the ensuing vasoconstriction is ascribed to ET-1 activating ETA and ETB2 and reactive nitrogen oxide species originating from ROS-NO interaction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3