Endogenous RGS proteins modulate SA and AV nodal functions in isolated heart: implications for sick sinus syndrome and AV block

Author:

Fu Ying,Huang Xinyan,Piao Lin,Lopatin Anatoli N.,Neubig Richard R.

Abstract

G protein-coupled receptors play a pivotal role in regulating cardiac automaticity. Their function is controlled by regulator of G protein signaling (RGS) proteins acting as GTPase-activating proteins for Gα subunits to suppress Gαi and Gαq signaling. Using knock-in mice in which Gαi2-RGS binding and negative regulation are disrupted by a genomic Gαi2G184S (GS) point mutation, we recently (Fu Y, Huang X, Zhong H, Mortensen RM, D'Alecy LG, Neubig RR. Circ Res 98: 659–666, 2006) showed that endogenous RGS proteins suppress muscarinic receptor-mediated bradycardia. To determine whether this was due to direct regulation of cardiac pacemakers or to alterations in the central nervous system or vascular responses, we examined isolated, perfused hearts. Isoproterenol-stimulated beating rates of heterozygote (+/GS) and homozygote (GS/GS) hearts were significantly more sensitive to inhibition by carbachol than were those of wild type (+/+). Even greater effects were seen in the absence of isoproterenol; the potency of muscarinic-mediated bradycardia was enhanced fivefold in GS/GS and twofold in +/GS hearts compared with +/+. A1-adenosine receptor-mediated bradycardia was unaffected. In addition to effects on the sinoatrial node, +/GS and GS/GS hearts show significantly increased carbachol-induced third-degree atrioventricular (AV) block. Atrial pacing studies demonstrated an increased PR interval and AV effective refractory period in GS/GS hearts compared with +/+. Thus loss of the inhibitory action of endogenous RGS proteins on Gαi2 potentiates muscarinic inhibition of cardiac automaticity and conduction. The severe carbachol-induced sinus bradycardia in Gαi2G184S mice suggests a possible role for alterations of Gαi2 or RGS proteins in sick sinus syndrome and pathological AV block.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3