Nitric oxide production contributes to Bacillus anthracis edema toxin-associated arterial hypotension and lethality: ex vivo and in vivo studies in the rat

Author:

Li Yan1,Cui Xizhong1,Xu Wanying1,Ohanjanian Lernik1,Sampath-Kumar Hanish1,Suffredini Dante1,Moayeri Mahtab2,Leppla Stephen2,Fitz Yvonne1,Eichacker Peter Q.1

Affiliation:

1. Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland; and

2. National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

Abstract

We showed previously that Bacillus anthracis edema toxin (ET), comprised of protective antigen (PA) and edema factor (EF), inhibits phenylephrine (PE)-induced contraction in rat aortic rings and these effects are diminished in endothelial-denuded rings. Therefore, employing rat aortic ring and in vivo models, we tested the hypothesis that nitric oxide (NO) contributes to ET's arterial effects. Compared with rings challenged with PA alone, ET (PA + EF) reduced PE-stimulated maximal contractile force (MCF) and increased the PE concentration producing 50% MCF (EC50) ( P < 0.0001). Compared with placebo, l-nitro-arginine methyl-ester (l-NAME), an NO synthase (NOS) inhibitor, reduced ET's effects on MCF and EC50 in patterns that approached or were significant ( P = 0.06 and 0.03, respectively). In animals challenged with 24-h ET infusions, l-NAME (0.5 or 1.0 mg·kg−1·h−1) coadministration increased survival to 17 of 28 animals (60.7%) compared with 4 of 27 (14.8%) given placebo ( P = 0.01). Animals receiving l-NAME but no ET all survived. Compared with PBS challenge, ET increased NO levels at 24 h and l-NAME decreased these increases ( P < 0.0001). ET infusion decreased mean arterial blood pressure (MAP) in placebo and l-NAME-treated animals ( P < 0.0001) but l-NAME reduced decreases in MAP with ET from 9 to 24 h ( P = 0.03 for the time interaction). S-methyl-l-thiocitrulline, a selective neuronal NOS inhibitor, had effects in rings and, at a high dose in vivo models, comparable to l-NAME, whereas N′-[3-(aminomethyl)benzyl]-acetimidamide, a selective inducible NOS inhibitor, did not. NO production contributes to ET's arterial relaxant, hypotensive, and lethal effects in the rat.

Funder

The intramural programs of the NIH, clinical center, critical care department

National institutes of allergy and infectious diseases

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3