Myocardial interstitial fluid inhibits proliferation and cardiomyocyte differentiation in pluripotent embryonic stem cells

Author:

Van Orman Jordan R.12,Weihrauch Dorothee32,Warltier David C.32,Lough John12

Affiliation:

1. Department of Cell Biology, Neurobiology and Anatomy,

2. Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin

3. Department of Anesthesiology, and

Abstract

Several recent studies have demonstrated that the transplantation of pluripotent murine embryonic stem cells (mESCs) can improve or restore the function of infarcted myocardium. Although the extent of remuscularization and its contribution to the restoration of function are unclear, these outcomes are likely strongly influenced by factors in the infarcted and/or ischemic environment. As an initial step toward understanding how the ischemic environment of host myocardium affects transplanted pluripotent cells, we have taken a reductionist approach wherein mESCs are cultured in medium containing ischemic myocardial interstitial fluid (iMIF). iMIF is generated in canine myocardium during eight hourly episodes of transient ischemia and collected on a daily basis, over a 24-day collection period. iMIF strongly reduced the numbers of pluripotent mESCs after 11 days in culture. This inhibitory effect, which was most pronounced for iMIF pools from early time points of the 24-day collection period, resulted from an inhibition of cell proliferation. iMIF also inhibited the differentiation of pluripotent mESCs into cardiomyocytes. By contrast, the expression of vascular smooth muscle and endothelial cell markers was relatively unaffected, consistent with previous findings that iMIF promotes angiogenesis. Taken together, these results suggest that whereas the ischemic/infarcted environment is favorable to stem cell-mediated angiogenesis, it is hostile to cardiac myogenesis. These findings also imply that observations of mESC-mediated improvement of cardiac function after transplantation of pluripotent cells do not reflect remuscularization.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3