Endogenous nitric oxide derived from NOS I or II in thoracic spinal cord exerts opposing tonic modulation on sympathetic vasomotor tone via disparate mechanisms in anesthetized rats

Author:

Poon Yan-Yuen12,Tsai Ching-Yi2,Cheng Chung-Dar3,Chang Alice Y. W.4,Chan Samuel H. H.2

Affiliation:

1. Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China;

2. Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China;

3. Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and

4. Institute of Physiology, National Cheng Kung University, Tainan, Taiwan, Republic of China

Abstract

The sympathetic preganglionic neurons (SPN) in the thoracic spinal cord regulate vasomotor tone via norepinephrine released from sympathetic terminals and adrenal medulla. We assessed the hypothesis that nitric oxide synthase I (NOS I)- and NOS II-derived nitric oxide (NO) in the thoracic spinal cord differentially modulate sympathetic outflow and that the adrenal medulla may be involved in those modulatory actions. In Sprague-Dawley rats, NOS I immunoreactivity was distributed primarily in the perikaryon, proximal dendrites, or axons of SPN, and small clusters of NOS II immunoreactivity impinged mainly on the circumference of SPN. Intrathecal administration of 7-nitroindazole (7-NI), a specific NOS I antagonist, into the thoracic spinal cord significantly reduced arterial pressure, heart rate, and basal or baroreflex-mediated sympathetic vasomotor tone. On the other hand, intrathecal application of S-methylisothiourea (SMT), a specific NOS II antagonist, elevated arterial pressure with a transient reduction of heart rate, induced a surge of plasma norepinephrine, and reduced baroreflex-mediated but not basal sympathetic vasomotor tone. Bilateral adrenalectomy significantly exacerbated the cardiovascular responses to 7-NI but antagonized those to SMT. We conclude that both NOS I and NOS II are present in the thoracic spinal cord and are tonically active under physiological conditions. Furthermore, the endogenous NO generated by NOS I-containing SPN exerts a tonic excitatory action on vasomotor tone mediated by norepinephrine released from the adrenal medulla and sympathetic nerve terminals. On the other hand, NO derived from NOS II exerts a tonic inhibitory action on sympathetic outflow from the SPN that targets primarily the blood vessels.

Funder

Chang Gung Medical Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3