Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes

Author:

Matsumoto Takayuki,Noguchi Eri,Ishida Keiko,Kobayashi Tsuneo,Yamada Nobuhiro,Kamata Katsuo

Abstract

We previously reported that in mesenteric arteries from aged Otsuka Long-Evans Tokushima fatty (OLETF) rats (a type 2 diabetes model) endothelium-derived hyperpolarizing factor (EDHF)-type relaxation is impaired while endothelium-derived contracting factor (EDCF)-mediated contraction is enhanced (Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K. Am J Physiol Heart Circ Physiol 293: H1480–H1490, 2007). Here we investigated whether acute and/or chronic treatment with metformin might improve this imbalance between the effects of the above endothelium-derived factors in mesenteric arteries isolated from OLETF rats. In acute studies on OLETF mesenteric arteries, ACh-induced relaxation was impaired and the relaxation became weaker at high ACh concentrations. Both metformin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside [AICAR, an AMP-activated protein kinase (AMPK) activator that is also activated by metformin] 1) diminished the tendency for the relaxation to reverse at high ACh concentrations and 2) suppressed both ACh-induced EDCF-mediated contraction and ACh-stimulated production of prostanoids (thromboxane A2 and PGE2). In studies on OLETF arteries from chronically treated animals, metformin treatment (300 mg·kg−1·day−1 for 4 wk) 1) improved ACh-induced nitric oxide- or EDHF-mediated relaxation and cyclooxygenase (COX)-mediated contraction, 2) reduced EDCF-mediated contraction, 3) suppressed production of prostanoids, and 4) reduced superoxide generation. Metformin did not alter the protein expressions of endothelial nitric oxide synthase (eNOS), phospho-eNOS (Ser1177), or COX-1, but it increased COX-2 protein. These results suggest that metformin improves endothelial functions in OLETF mesenteric arteries by suppressing vasoconstrictor prostanoids and by reducing oxidative stress. Our data suggest that within the timescale studied here, metformin improves endothelial function through this direct mechanism, rather than by improving metabolic abnormalities.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3