Increased mitochondrial H2O2 production promotes endothelial NF-κB activation in aged rat arteries

Author:

Ungvari Zoltan,Orosz Zsuzsanna,Labinskyy Nazar,Rivera Aracelie,Xiangmin Zhao,Smith Kira,Csiszar Anna

Abstract

Previous studies have shown that the aging vascular system undergoes pro-atherogenic phenotypic changes, including increased oxidative stress and a pro-inflammatory shift in endothelial gene expression profile. To elucidate the link between increased oxidative stress and vascular inflammation in aging, we compared the carotid arteries and aortas of young and aged (24 mo old) Fisher 344 rats. In aged vessels there was an increased NF-κB activity (assessed by luciferase reporter gene assay and NF-κB binding assay), which was attenuated by scavenging H2O2. Aging did not alter the vascular mRNA and protein expression of p65 and p50 subunits of NF-κB. In endothelial cells of aged vessels there was an increased production of H2O2 (assessed by 5,6-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate-acetyl ester fluorescence), which was attenuated by the mitochondrial uncoupler FCCP. In young arteries and cultured endothelial cells, antimycin A plus succinate significantly increased FCCP-sensitive mitochondrial H2O2 generation, which was associated with activation of NF-κB. In aged vessels inhibition of NF-κB (by pyrrolidenedithiocarbamate, resveratrol) significantly attenuated inflammatory gene expression and inhibited monocyte adhesiveness. Thus increased mitochondrial oxidative stress contributes to endothelial NF-κB activation, which contributes to the pro-inflammatory phenotypic alterations in the aged vaculature. Our model predicts that by reducing mitochondrial H2O2 production and/or directly inhibiting NF-κB novel anti-aging pharmacological treatments (e.g., calorie restriction mimetics) will exert significant anti-inflammatory and vasoprotective effects.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference46 articles.

1. Resveratrol improves health and survival of mice on a high-calorie diet

2. Therapeutic potential of resveratrol: the in vivo evidence

3. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins

4. Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, Echtay KS. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp: 203–213, 2004.

5. Nuclear factor kappa B activation by NADPH oxidases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3